3.297 \(\int \frac{(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{c+d \sin (e+f x)} \, dx\)

Optimal. Leaf size=153 \[ \frac{2 a^2 (-3 A d+3 B c-4 B d) \cos (e+f x)}{3 d^2 f \sqrt{a \sin (e+f x)+a}}-\frac{2 a^{3/2} (c-d) (B c-A d) \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a \sin (e+f x)+a}}\right )}{d^{5/2} f \sqrt{c+d}}-\frac{2 a B \cos (e+f x) \sqrt{a \sin (e+f x)+a}}{3 d f} \]

[Out]

(-2*a^(3/2)*(c - d)*(B*c - A*d)*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])]
)/(d^(5/2)*Sqrt[c + d]*f) + (2*a^2*(3*B*c - 3*A*d - 4*B*d)*Cos[e + f*x])/(3*d^2*f*Sqrt[a + a*Sin[e + f*x]]) -
(2*a*B*Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(3*d*f)

________________________________________________________________________________________

Rubi [A]  time = 0.502825, antiderivative size = 153, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.108, Rules used = {2976, 2981, 2773, 208} \[ \frac{2 a^2 (-3 A d+3 B c-4 B d) \cos (e+f x)}{3 d^2 f \sqrt{a \sin (e+f x)+a}}-\frac{2 a^{3/2} (c-d) (B c-A d) \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a \sin (e+f x)+a}}\right )}{d^{5/2} f \sqrt{c+d}}-\frac{2 a B \cos (e+f x) \sqrt{a \sin (e+f x)+a}}{3 d f} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Sin[e + f*x])^(3/2)*(A + B*Sin[e + f*x]))/(c + d*Sin[e + f*x]),x]

[Out]

(-2*a^(3/2)*(c - d)*(B*c - A*d)*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])]
)/(d^(5/2)*Sqrt[c + d]*f) + (2*a^2*(3*B*c - 3*A*d - 4*B*d)*Cos[e + f*x])/(3*d^2*f*Sqrt[a + a*Sin[e + f*x]]) -
(2*a*B*Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(3*d*f)

Rule 2976

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])
^(n + 1))/(d*f*(m + n + 1)), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x]
)^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*S
in[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&
NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{c+d \sin (e+f x)} \, dx &=-\frac{2 a B \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{3 d f}+\frac{2 \int \frac{\sqrt{a+a \sin (e+f x)} \left (\frac{1}{2} a (B c+3 A d)-\frac{1}{2} a (3 B c-3 A d-4 B d) \sin (e+f x)\right )}{c+d \sin (e+f x)} \, dx}{3 d}\\ &=\frac{2 a^2 (3 B c-3 A d-4 B d) \cos (e+f x)}{3 d^2 f \sqrt{a+a \sin (e+f x)}}-\frac{2 a B \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{3 d f}+\frac{(a (c-d) (B c-A d)) \int \frac{\sqrt{a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx}{d^2}\\ &=\frac{2 a^2 (3 B c-3 A d-4 B d) \cos (e+f x)}{3 d^2 f \sqrt{a+a \sin (e+f x)}}-\frac{2 a B \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{3 d f}-\frac{\left (2 a^2 (c-d) (B c-A d)\right ) \operatorname{Subst}\left (\int \frac{1}{a c+a d-d x^2} \, dx,x,\frac{a \cos (e+f x)}{\sqrt{a+a \sin (e+f x)}}\right )}{d^2 f}\\ &=-\frac{2 a^{3/2} (c-d) (B c-A d) \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{d} \cos (e+f x)}{\sqrt{c+d} \sqrt{a+a \sin (e+f x)}}\right )}{d^{5/2} \sqrt{c+d} f}+\frac{2 a^2 (3 B c-3 A d-4 B d) \cos (e+f x)}{3 d^2 f \sqrt{a+a \sin (e+f x)}}-\frac{2 a B \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{3 d f}\\ \end{align*}

Mathematica [B]  time = 3.4313, size = 356, normalized size = 2.33 \[ \frac{(a (\sin (e+f x)+1))^{3/2} \left (6 \sqrt{d} (2 A d-2 B c+3 B d) \sin \left (\frac{1}{2} (e+f x)\right )-6 \sqrt{d} (2 A d-2 B c+3 B d) \cos \left (\frac{1}{2} (e+f x)\right )+\frac{3 (c-d) (B c-A d) \left (2 \log \left (\sqrt{d} \sqrt{c+d} \left (\tan ^2\left (\frac{1}{4} (e+f x)\right )+2 \tan \left (\frac{1}{4} (e+f x)\right )-1\right )+(c+d) \sec ^2\left (\frac{1}{4} (e+f x)\right )\right )-2 \log \left (\sec ^2\left (\frac{1}{4} (e+f x)\right )\right )+e+f x\right )}{\sqrt{c+d}}-\frac{3 (c-d) (B c-A d) \left (2 \log \left (-\sec ^2\left (\frac{1}{4} (e+f x)\right ) \left (-\sqrt{d} \sqrt{c+d} \sin \left (\frac{1}{2} (e+f x)\right )+\sqrt{d} \sqrt{c+d} \cos \left (\frac{1}{2} (e+f x)\right )+c+d\right )\right )-2 \log \left (\sec ^2\left (\frac{1}{4} (e+f x)\right )\right )+e+f x\right )}{\sqrt{c+d}}-2 B d^{3/2} \sin \left (\frac{3}{2} (e+f x)\right )-2 B d^{3/2} \cos \left (\frac{3}{2} (e+f x)\right )\right )}{6 d^{5/2} f \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^3} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Sin[e + f*x])^(3/2)*(A + B*Sin[e + f*x]))/(c + d*Sin[e + f*x]),x]

[Out]

((a*(1 + Sin[e + f*x]))^(3/2)*(-6*Sqrt[d]*(-2*B*c + 2*A*d + 3*B*d)*Cos[(e + f*x)/2] - 2*B*d^(3/2)*Cos[(3*(e +
f*x))/2] - (3*(c - d)*(B*c - A*d)*(e + f*x - 2*Log[Sec[(e + f*x)/4]^2] + 2*Log[-(Sec[(e + f*x)/4]^2*(c + d + S
qrt[d]*Sqrt[c + d]*Cos[(e + f*x)/2] - Sqrt[d]*Sqrt[c + d]*Sin[(e + f*x)/2]))]))/Sqrt[c + d] + (3*(c - d)*(B*c
- A*d)*(e + f*x - 2*Log[Sec[(e + f*x)/4]^2] + 2*Log[(c + d)*Sec[(e + f*x)/4]^2 + Sqrt[d]*Sqrt[c + d]*(-1 + 2*T
an[(e + f*x)/4] + Tan[(e + f*x)/4]^2)]))/Sqrt[c + d] + 6*Sqrt[d]*(-2*B*c + 2*A*d + 3*B*d)*Sin[(e + f*x)/2] - 2
*B*d^(3/2)*Sin[(3*(e + f*x))/2]))/(6*d^(5/2)*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3)

________________________________________________________________________________________

Maple [B]  time = 1.621, size = 291, normalized size = 1.9 \begin{align*}{\frac{2+2\,\sin \left ( fx+e \right ) }{3\,{d}^{2}\cos \left ( fx+e \right ) f}\sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) } \left ( 3\,A{\it Artanh} \left ({\frac{\sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) }d}{\sqrt{a \left ( c+d \right ) d}}} \right ){a}^{2}cd-3\,A{\it Artanh} \left ({\frac{\sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) }d}{\sqrt{a \left ( c+d \right ) d}}} \right ){a}^{2}{d}^{2}-3\,B{\it Artanh} \left ({\frac{\sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) }d}{\sqrt{a \left ( c+d \right ) d}}} \right ){a}^{2}{c}^{2}+3\,B{\it Artanh} \left ({\frac{\sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) }d}{\sqrt{a \left ( c+d \right ) d}}} \right ){a}^{2}cd+B \left ( -a \left ( -1+\sin \left ( fx+e \right ) \right ) \right ) ^{{\frac{3}{2}}}\sqrt{a \left ( c+d \right ) d}d-3\,A\sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) }\sqrt{a \left ( c+d \right ) d}ad+3\,B\sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) }\sqrt{a \left ( c+d \right ) d}ac-6\,B\sqrt{-a \left ( -1+\sin \left ( fx+e \right ) \right ) }\sqrt{a \left ( c+d \right ) d}ad \right ){\frac{1}{\sqrt{a \left ( c+d \right ) d}}}{\frac{1}{\sqrt{a+a\sin \left ( fx+e \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c+d*sin(f*x+e)),x)

[Out]

2/3*(1+sin(f*x+e))*(-a*(-1+sin(f*x+e)))^(1/2)*(3*A*arctanh((-a*(-1+sin(f*x+e)))^(1/2)*d/(a*(c+d)*d)^(1/2))*a^2
*c*d-3*A*arctanh((-a*(-1+sin(f*x+e)))^(1/2)*d/(a*(c+d)*d)^(1/2))*a^2*d^2-3*B*arctanh((-a*(-1+sin(f*x+e)))^(1/2
)*d/(a*(c+d)*d)^(1/2))*a^2*c^2+3*B*arctanh((-a*(-1+sin(f*x+e)))^(1/2)*d/(a*(c+d)*d)^(1/2))*a^2*c*d+B*(-a*(-1+s
in(f*x+e)))^(3/2)*(a*(c+d)*d)^(1/2)*d-3*A*(-a*(-1+sin(f*x+e)))^(1/2)*(a*(c+d)*d)^(1/2)*a*d+3*B*(-a*(-1+sin(f*x
+e)))^(1/2)*(a*(c+d)*d)^(1/2)*a*c-6*B*(-a*(-1+sin(f*x+e)))^(1/2)*(a*(c+d)*d)^(1/2)*a*d)/d^2/(a*(c+d)*d)^(1/2)/
cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sin \left (f x + e\right ) + A\right )}{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{3}{2}}}{d \sin \left (f x + e\right ) + c}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c+d*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^(3/2)/(d*sin(f*x + e) + c), x)

________________________________________________________________________________________

Fricas [B]  time = 9.73292, size = 2086, normalized size = 13.63 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c+d*sin(f*x+e)),x, algorithm="fricas")

[Out]

[-1/6*(3*(B*a*c^2 - (A + B)*a*c*d + A*a*d^2 + (B*a*c^2 - (A + B)*a*c*d + A*a*d^2)*cos(f*x + e) + (B*a*c^2 - (A
 + B)*a*c*d + A*a*d^2)*sin(f*x + e))*sqrt(a/(c*d + d^2))*log((a*d^2*cos(f*x + e)^3 - a*c^2 - 2*a*c*d - a*d^2 -
 (6*a*c*d + 7*a*d^2)*cos(f*x + e)^2 - 4*(c^2*d + 4*c*d^2 + 3*d^3 - (c*d^2 + d^3)*cos(f*x + e)^2 + (c^2*d + 3*c
*d^2 + 2*d^3)*cos(f*x + e) - (c^2*d + 4*c*d^2 + 3*d^3 + (c*d^2 + d^3)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f
*x + e) + a)*sqrt(a/(c*d + d^2)) - (a*c^2 + 8*a*c*d + 9*a*d^2)*cos(f*x + e) + (a*d^2*cos(f*x + e)^2 - a*c^2 -
2*a*c*d - a*d^2 + 2*(3*a*c*d + 4*a*d^2)*cos(f*x + e))*sin(f*x + e))/(d^2*cos(f*x + e)^3 + (2*c*d + d^2)*cos(f*
x + e)^2 - c^2 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x + e) + (d^2*cos(f*x + e)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c
*d - d^2)*sin(f*x + e))) + 4*(B*a*d*cos(f*x + e)^2 - 3*B*a*c + (3*A + 4*B)*a*d - (3*B*a*c - (3*A + 5*B)*a*d)*c
os(f*x + e) + (B*a*d*cos(f*x + e) + 3*B*a*c - (3*A + 4*B)*a*d)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a))/(d^2*f*
cos(f*x + e) + d^2*f*sin(f*x + e) + d^2*f), -1/3*(3*(B*a*c^2 - (A + B)*a*c*d + A*a*d^2 + (B*a*c^2 - (A + B)*a*
c*d + A*a*d^2)*cos(f*x + e) + (B*a*c^2 - (A + B)*a*c*d + A*a*d^2)*sin(f*x + e))*sqrt(-a/(c*d + d^2))*arctan(1/
2*sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) - c - 2*d)*sqrt(-a/(c*d + d^2))/(a*cos(f*x + e))) + 2*(B*a*d*cos(f*
x + e)^2 - 3*B*a*c + (3*A + 4*B)*a*d - (3*B*a*c - (3*A + 5*B)*a*d)*cos(f*x + e) + (B*a*d*cos(f*x + e) + 3*B*a*
c - (3*A + 4*B)*a*d)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a))/(d^2*f*cos(f*x + e) + d^2*f*sin(f*x + e) + d^2*f)
]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(3/2)*(A+B*sin(f*x+e))/(c+d*sin(f*x+e)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))/(c+d*sin(f*x+e)),x, algorithm="giac")

[Out]

Timed out